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EXPLORING THE FULL CONTINUUM OF TRAVEL: 
DATA FUSION BY RECURSIVE PARTIONING REGRESSION 
 
ABSTRACT 
The analyses that can be conducted in a given public policy area are often limited by the 
content of a single database but often require data that are available from more than one 
source (Rodgers 1984).  It is useful if data from multiple databases can be combined 
(fused) to support planning and decision-making.  Except in the simplest cases, such 
fusion poses hard statistical problems.  This paper describes an effort to address some of 
these problems through the use of recursive partitioning regression (CART).  
 
To illustrate our approach, we take the first steps to fuse household travel data that were 
obtained from two surveys performed for the United States Department of Transportation 
in 1995.  The first data set is from the Nationwide Personal Transportation Survey 
(NPTS); this survey was performed for the Federal Highways Administration, and 
focused upon daily travel (mostly short trips).  The second data set is from the American 
Travel Survey (ATS), which was run by the Bureau of Transportation Statistics (BTS); 
the ATS focused on long-distance travel (trips of 100 miles or more).  Both surveys 
collected data on household demographics and trip characteristics from the same 
population, but the surveys did not include the same households in the sample.  Clearly, a 
more complete understanding of all passenger travel in the U.S. will be obtained if 
households in the surveys can be meaningfully matched, so that long and short trips may 
be studied together. 
 
This paper describes the need for data fusion in federal statistics and outlines previous 
work on data fusion approaches.  We detail the recursive partitioning analyses we 
perform, and interpret the results.  Finally we address the problem of data fusion using 
the refined partition, and place this in the context of statistical methods for record 
matching.  The last section draws conclusions about the value of the proposed 
methodology. 
 
 
1. OVERVIEW AND PURPOSE 
In the United States, the federal government maintains thousands of data collection 
programs, each focused around some specific program goal.  But with rising survey costs 
and the need to improve the efficiency of government spending, there is great pressure on 
government statisticians to use these data sets to address questions that were not foreseen 
during survey design.   
 
The experience of the United States Department of Transportation (DOT) is typical.  
Large amounts of data are needed by many different agencies within DOT to track 
program performance and assess new needs.  These agencies undertake separate 
collection efforts, but portions of those efforts, especially questions related to 
demographics, are very similar.  So when transportation professionals seek to look across 
programs or develop general information on transportation behavior, it is natural to 
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attempt to combine the information from databases maintained by the different agencies.  
Additional impetus for data fusion derives from the Paperwork Reduction Act, which 
strongly discourages respondent burden and thus implicitly encourages the division of 
lengthy questionnaires into parts that can be distributed across different households.  This 
forces a compromise on the completeness, quality, and utility of data that are collected. 
 
The collection of passenger travel data is especially troubled by this compromise, 
because travel information is so complex.  Besides necessary household demographics, 
detailed trip data, such as the mode, purpose, origin, destination, distance, and so forth of 
each trip are obtained.  The required detail imposes significant burden, and consequently 
issues of  low response rates, curtailed interviews, and suspect quality are of top priority.  
The current approach to addressing this is to use multiple instruments that collect 
information on separate aspects of travel (Madre 1999).  
 
For example, the U.S. DOT currently has two national surveys in place that focus on 
different types of trips and use different trip definitions and reporting periods: 
 

• The Nationwide Personal Transportation Survey (NPTS) collects data on all 
trips made by U.S. households during one day.  Although the survey collects 
data on trips of all lengths, because of the short reporting period, the emphasis 
is primarily on daily, local travel. 

• The American Travel Survey (ATS) collects data on trips of 100 miles or 
more (one-way).  Because of the rarity of these trips, a three-month reporting 
period window was used. 

 
In 1995 both the NPTS and the ATS were conducted.  In this paper we look at the 
possibility of fusing these two datasets to create one complete representation of the full 
continuum of personal travel by U.S. households. 
 
These two national surveys were conducted separately, with no coordination in the 
sampling, data collection methods, and questionnaire design.  Both surveys provide 
valuable information; however, these historically uncoordinated efforts leave large gaps 
in passenger travel data.   The NPTS provides an abundance of data on short, local trips 
while the ATS does not even ask for this information.  This is an unfortunate disconnect; 
it means that the DOT has little data on the full continuum of passenger travel from 
which to guide planning and policy-making at a national level.  
 
A second concern is that the separate DOT surveys provide no useful data on the 
relationship between long-distance and daily travel within the same households.  There is 
great interest in improving our understanding and ability to predict travel behavior.  
However, one factor affecting daily trip rates may be the rate of long-distance travel in 
the household.  Without data on all travel, an important piece of the picture may be 
missing.    
 
A third consideration is our ability to check the completeness and accuracy of the 
collected data. Jean-Loup Madre (1999), in the context of the French National Travel 
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Survey, recommends a joint daily and long-distance survey, in part because of the 
benefits derived from crosschecking the data.     
 
Together, these data sets could provide more precise and thorough information on the 
characteristics, behaviors, and preferences of transportation users so that the performance 
of the transportation system can be accurately measured and improved based on current 
and future needs.  Because of the differing reporting periods and the amount of 
information needed on each trip to establish seasonal trip rates by mode, purpose, and 
length for regions and population subgroups, collecting data on both daily and long 
distance travel from each sampled household may be too burdensome for respondents.  In 
light of this, we need an alternative method for obtaining data on the full continuum of 
travel in the United States and the relationship, if any, between long-distance and daily 
travel.  
 
One such alternative is to make use of the data fusion techniques to link household data 
on daily and long distance travel (Rassler and Feischer 1997, Kamakura and Wedel 
1996).   The rest of this paper examines issues and methods for achieving such linkage 
using NPTS and ATS data as the motivating example and testbed. 
 
   
2.  OVERVIEW OF FUSION PROCESS 
Data fusion involves the linking of two survey data files from the same population based 
on a set of common variables.  Mostly, the fusion of data is applied when an alternative 
single source data set cannot be sampled for practical reasons (Wiedenbeck 1999). The 
objective is to expand the scope of information available in any given source by matching 
records from one source to a second source using a set of common variables and 
matching criteria (Rodgers 1984).  Statistical matching procedures were developed by 
analogy with exact matching procedures, where records from one source are linked to 
records from a second source using unique identifiers (Rodgers 1984).   
 
When data comes from different samples it is not possible to do an exact match on the 
same individual.  Therefore a fusion process has been developed to allow the matching of 
information from each survey based on a set of common variables.  The process, in 
theory, is very close to the imputation process applied to missing data in one data set in 
that missing data is filled in with data from a record or grouping of records most like the 
missing record.    In fact, the data to be transferred or appended is often called the 
“missing data” (Baker, Harris, and O’Brien 1994).  
 
In data fusion, information from one survey is appended to another survey based on 
common variables of the sample units to enhance the scope of information available for 
analyses.  This is carried out at the individual record level. Each record in one of the data 
sources (donor file) is matched with a record from the second source (recipient file) 
(Rodgers 1984).  The accuracy of the data fusion process is a function of the donor file; 
the larger the donor fine, the better chance there is of finding more acceptable matches 
between donor and recipients (Baker, Harris, and O’Brien 1989, Rassler and Feischer 
1997).   
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The objective of data fusion can be viewed as the analysis of an unknown common 
distribution [X, Y] of two multivariate variables X and Y (Wiedenbeck 1999).  Since 
there is no single source with information on X and Y together, an artificial data base (Z) 
is generated by matching the observations of both sources according to common variables 
(Rassler and Feischer 1997).  For example, let X be the recipient file and let Y be the 
donor file.  Individual records from file Y are appended to individual records in file X to 
form a new data set Z that contains data on X and Y. 
 

X= recipient file 
Y= donor file 
Z= X+Y, based on the matching of variables common to X and Y.   

 
Each recipient record is linked to one or more donor records in file Y, on the basis of 
variables that are observed in both files (Kamakura and Wedel 1996).  The key principle 
of fusion is that once respondents from the donor file and recipient files are matched in 
some way, all the missing data are passed from donor to recipient, thus preserving the 
interrelationships between variables from the donor to recipient file (Baker, Harris, and 
O’Brien 1994).  Rodgers (1984) provides an in-depth description of the various 
procedures developed for data fusion. 
 
In the case of the NPTS and ATS, the objective is to append the long-distance trip data 
(ATS) onto the daily trip data (NPTS) to allow for analyses of the full continuum of 
passenger travel and the relationship of long-distance and daily travel.  
 
 
2.1 The Common Variables 
The selection of common variables is an important part of the fusion process.  Typically, 
several sociodemographic variables are the basis for the set of matching variables 
primarily because these are the variables most likely to appear in both data sets (Rassler 
and Fleischer 1997, Kamakura and Wedel 1996).  However, many other variables may be 
included in the files for the specific purpose of data fusion (Kamakura and Wedel 1996).   
 
Various researchers take slightly different approaches, but typically the common 
variables are determined by multiple regression where the variables with the highest R2 

squared in the donor and recipient files are used for the matching process.  The individual 
records are then matched based on either an exact variable match (e.g. sex) or by use of a 
distance function (e.g. similarities in age).   
 
Baker, Harris, and O’Brian (1994) devote a significant portion of their experiment to 
choosing common variables and matching criteria.  They use discriminate analysis and 
regression analysis to find the predictive common variables and suggest that an analysis 
of the donor file be carried out prior to the matching process in which each variable to be 
fused is cross-tabulated against all potential common variables and included if 
discrimination is evident.  O’Brien (1991) on the other hand, uses all variables common 
to both data sets but assigns different weights to each variable based on the results of the 
analyses of variance. Kamakura and Wedel propose a probabilistic model that first 
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identifies homogenous groups on the basis of all information available from the two 
samples as the first step in matching variable selection (1996).   
   
Much of the research, actually, provides little information on the process of selecting 
matching variables. In contrast, researchers have focused more extensively on the 
matching process and the validity of various matching algorithms (Rubin 1986, Rodgers 
1984, Wiedenbeck 1999, Rassler and Feischer 1997).   Rassler and Fleischer (1997), for 
example, provide a thorough overview of the matching process and offer an in-depth 
examination of the performance of various fusion algorithms.  However, little emphasis is 
placed on the determination of matching variables.  
 
We felt that the selection of match variables deserved greater attention, and therefore 
aimed much of our focus on that process.  This focus on selecting the right set of 
variables led us to the use of recursive partitioning regression.  This methodology is 
widely associated with the acronym CART (for Classification and Regression Trees) as 
popularized by Breinam, Friedman, Olshen and Stone, 1984.  
 
To achieve the household matching, we use CART to develop recursive partitioning 
regression models for both data sets, where the number of trips in each household is taken 
as the response variable.  These CART models divide the space of the explanatory 
variables into regions such that the variation in trip count for households within the same 
region is relatively small.  The two analyses thus produce two independent partitions of 
the space of explanatory variables.  We argue that if these partitions are overlaid to 
produce a more refined partition, then households within the sub regions induced by the 
refined partition may be matched for certain kinds of statistical analyses. 
 
This approach allows us to use what we know about travel behavior and the predictive 
demographics, and explore how these demographic variables could be used to bridge the 
gap between the two datasets.  To make a meaningful match, we make an in-depth 
examination into the selection of matching variables and provide an alternative to logistic 
regression for the selection of matching variables: recursive partitioning regression. 
 
 
3. RECURSIVE PARTITIONING REGRESSION 
Recursive Partitioning Regression (RPR) is a computer-intensive competitor to 
conventional multiple linear regression.  It is designed to work well when the functional 
relationship is nonlinear, when certain explanatory variables are only applicable in certain 
regions of the variable space, and when variable selection is required.  Although an early 
version of RPR was proposed by Morgan and Sonquist (1963), the method did not 
become popular until computational speed and more sophisticated statistical theory led to 
CART, a software program described by Breiman, Friedman, Olshen and Stone (1984).  
CART is an acronym for Classification and Regression Trees; most often it is used in 
classification problems.  In this paper we focus on its performance as a tool for 
regression. 
 
In recent years, many implementations of RPR have been developed---we used the 

 6



version of CART that is commercially available from Salford Systems, Inc., but our 
usage should not be interpreted as any recommendation of that product.  Different 
implementations effect slightly different strategies for deciding when partitions provide 
useful explanation.  These choices can lead to somewhat different regression trees, and at 
present there is no clear consensus within the statistical community as to which 
approaches work best under any given circumstances.  We are generally pleased with our 
results, but recognize that a comparative study would be worthwhile. (For further 
discussion of the robustness of the CART results, see Shannon and Banks, 1997) 
 
An RPR algorithm works by considering all possible splits on all possible explanatory 
variables.  For continuous variables, such as age, it examines all the gaps (here age was 
recorded to the nearest adult year, so it could split between 18 and 19, 19 and 20, and so 
forth); for categorical values, such as whether or not one is a driver, it considers each 
category.  RPR picks as the first split the one that does the best job of separating low 
response values from high response values.  Then it reapplies the same procedure 
recursively, first to the cases on the left-hand side of the initial split, and then to the cases 
on the right.  Proceeding in this fashion, it generates a regression tree.  When it reaches a 
point in a branch of the tree at which no explanatory variable splits the cases sufficiently 
well to satisfy the implementation’s splitting criterion, then the algorithm stops splitting 
and declares a terminal node.  Different RPR algorithms employ different kinds of 
splitting and termination criteria; additionally, some RPR algorithms, such as CART, 
grow large trees, and then prune them back using cross-validation to reduce prediction 
error. 
 
In this study, we used: 

• The least squares criterion to divide the cases at splitting nodes. The least squares 
rule picks the split that most reduces the mean squared error in the two new 
groups, as compared to the mean squared error in the original undivided group.  

• A complexity penalty that prevented subdivision of nodes with fewer than ten 
cases.  The complexity penalty and tree pruning ensure that trees do not have too 
many branches.  (For the ATS, the optimal tree that was produced had 40 
terminal nodes---although this gave good fit, we believed that for this initial 
study of RPR methods in data fusion, it was preferable to increase the complexity 
penalty, resulting in a tree with only 20 terminal nodes.) 

• 10-fold cross-validation to improve prediction error.   
 

Cross-validation addresses a subtler problem.  This technique is used to prevent overfit.  
In applications with many variables, it is easy to find spurious regression structure by 
chance; this leads to good fit for the training sample, but poor predictions with future 
data.  Essentially, one is fitting the noise in the sample as well as the signal.  A common 
way to control this is to divide the sample at random into ten parts; for each part, an RPR 
tree is built with the remaining nine-tenths of the data, and then used to predict the held-
out tenth.  The final tree is pruned back until the prediction error on the hold-out 
subsamples is minimized. 
 
The following characterizations are, very slightly, impressionistic; for example, we refer 
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to urban and non-urban areas, but realize this is not a sharp distinction.   Similarly, we 
refer to two-parent households, but recognize that some of these might contain a 
grandparent, parent, and child.  But for broad descriptive purposes, we try to match 
conventional household patterns to the terminal nodes in the CART tree. 
 
With this perspective (more details on the algorithm are contained in Breiman et al., 
1984), we proceed to interpret the CART trees produced in the study of the NPTS data.  
The quickest way to describe the RPR method is to work though an example of CART 
output from the analysis of NPTS data.  In this analysis we took the number of trips to be 
the response variable, and built a model that predicted that response from the values of 
the explanatory variables, which were essentially all of the other variables collected in the 
survey.  
 
 
3.1 Description of the Variables Effecting Daily Travel 
 
 Figure 1 shows the regression tree that CART built. 
 
 
 

Figure 1: NPTS CART® Tree 
 

 
 

Optimal 19 Node Tree 
 

  
 

 
To discuss Figure 1, note that the tree contains two types of nodes: terminal nodes and 
splitting nodes that simply divide the dataset.  The terminal nodes show the estimated 
value (in this case the trip rate) for the specific combination of response variables when 
no other splits in the database are meaningful.  The splitting nodes are where the program 
separates the households in the survey according to some value of an explanatory 
variable.  To facilitate description of the tree, we number the splitting nodes from top to 
bottom and from left to right.  Similarly, the terminal nodes are given alphabetic labels, 
from left to right. 
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Table 2a – Definition of Splitting Nodes 
NODE SPLITTER SPLITTING CRITERION STANDARD 

DEVIATION
AVERAGE 

TRIPS 
N 

1 DRIVER No 3.150 4.414 33763 
2 AGE Less or equal to 72.5 2.589 2.587 3295 
3 WORKER No 2.630 2.93 2454 
4 LIFE CYCLE Adult(s), No Children; >1 

Adult Child 16-21; Adult(s), 
Retired  No Children                

3.142 3.142 30468 

5 EDUCATION Less or equal to high school 2.992 4.360 18791 

6 WORKER No 2.962 4.062 8150 
7 EDUCATION Less then high school 3.049 3.742 3739 
8 AGE Less or equal to 76.0 2.995 4.558 10641 
9 LOCATION New England, Middle 

Atlantic, S. Atlantic, W.S. 
Central, Pacific, Chicago, 
New York  

2.996 4.625 10187 

10 EDUCATION Less or equal to high school 3.33 5.017 11677 
11 WORKER No 3.257 4.670 4709 
12 LOCATION Middle Atlantic, E.N. Central, 

E.S. Central, W.S. Central, 
Chicago, Los Angeles, New 
York, San Francisco, 
Washington DC 

3.437 4.267 1066 

13 SEX Male 3.193 4.788 3643 
14 RACE Black, Asian, Other 3.287 5.076 1661 
15 HHSIZE Less or equal to 3.5 3.359 5.252 6968 
16 LIFE CYCLE >1 Adult, Child 0-5 3.164 4.912 2079 
17 RELATIONS

HIP* 
Parent, Sibling, Other, 
Partner, Non-relative 

3.428 5.396 4889 

18 LOCATION Middle Atlantic, S. Atlantic, 
E.S. Central, pacific, 
Chicago, Los Angeles, New 
York, San Francisco, 
Washington DC 

3.429 5.437 4735 

 * Relationship with respect to the reference person.   
 
 
The top node (Node 1) in the tree is a splitting node.  As shown in Table 2a, it divides the 
cases in the survey according to whether or not the respondent is a driver.  If the 
respondent is not a driver, Table 2a shows that the next split (Node 2) occurs on age; if 
the respondent is less than 72.5 years old, two branches occur—one branch goes to 
terminal Node C (shown in Table 2b)---this node consists of respondents who do not 
drive and who are more than 72.5 years old.   The mean number of trips in Node C is 
1.586, and the standard deviation is 2.174.  In contrast, the other branch splits at Node 3 
according to whether or not the respondent is employed.  Those that are employed 
terminate at Node B, and make an average of 3.404 daily trips with a standard deviation 
of 2.523.  Those that are not employed go left to Node A, and make an average of 2.617 
trips, with a standard deviation of 2.652.   In this fashion one can interpret the entire tree 
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in Figure 1, using the information in Tables 2a and 2b. 
 
Table 2b 

Terminal Node Standard 
Deviation

Average N 

A 2.652 2.617 1479
B 2.523 3.405 975
C 2.174 1.586 841
D 2.890 3.224 1056
E 3.086 3.945 2683
F 2.857 4.333 4411
G 2.959 4.558 8268
H 3.134 4.910 1919
I 2.837 3.775 454
J 3.336 3.951 647
K 3.533 4.757 419
L 3.091 4.546 1982
M 2.972 4.223 274
N 3.319 5.245 1387
O 2.957 4.516 890
P 3.279 5.209 1189
Q 3.140 4.136 154
R 3.334 5.226 2477
S 3.516 5.669 2258

 
 
All of the above categories came from the first split of the database on whether the 
respondent drives.  If the respondent is not a driver, the sample divides along age—the 
elderly from other adults, and then whether the respondent is a worker.  If the respondent 
is a driver (the right hand side of the first split) the next variable of importance is life 
cycle, or life-stage (Node 4 in Table 2a).  The two major divisions of the sample were 
between respondents in households with young children (less than 16), and respondents 
in households with older children living at home or no children. 
 
For respondents without young children in the household, the next sample split was on 
education—high school graduates or less on one side and some college or more on the 
other.  The terminal Node D describes unemployed drivers without childcare 
responsibilities and less than a high-school education.  Node E describes unemployed 
drivers without childcare responsibilities who have high-school degrees.  In Node F are 
employed drivers without childcare responsibilities and who have high-school degrees.  
Examination of the average trip rates indicates that employment increases the number of 
daily trips, as does education, and both effects are plausible. Node G contains non-elderly 
drivers without child-care responsibilities, more than high-school education, and who live 
in urbanized areas.  Node H is as Node G, except the households are in less urban areas; 
Node H has a higher trip rate.  Node I consists of elderly drivers with more than high-
school educations and no childcare duties---they take fewer daily trips than Nodes H and 
G.  
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In the other partition (on the right-hand side of Figure 1) of the separation by life cycle 
(Node 4) are those respondents who have children present in the household. Again the 
next split divides the data set into those who have a high school education or less:  Node J 
are unemployed drivers with child-care duties and no college education who live in urban 
areas; Node K are the same, but live in less urban areas.  As noted before, those in less 
urban areas take more daily trips.  Node L describes male working drivers with children 
and no college education.  Node M describes minority female working drivers with 
children and no college education; respondents in Node N are similar but white.  The 
minority women take fewer daily trips than males who take fewer trips than white women 
(this is an interactive effect between race and gender which could not be easily 
discovered by conventional multiple regression techniques).     
 
If the respondent went beyond high school, the next variable that divides the data is 
household size.  Node O are drivers in a two-parent household with one child and at least 
some college.  Node P are single-parent drivers with some college education.  The latter 
report more daily trips---this may show that the household sustaining trips that are 
commonly shared by two parents fall more heavily on single parents.  
 
The next splitting node divides the remaining cases by the respondent’s relationship to 
the head of the household (remember, these are larger households and extended families).  
If the respondent is not the head of the household, spouse or child, but a parent, sibling, 
or non-relative then the branch goes to the left.  Node Q describes drivers in larger 
households that have some college but who are part of an extended family—not the 
spouse or child of the head of the household. 
 
Node R describes educated drivers who are the head of the household in these larger 
households, or the spouse or child, and who live in an urban environment. Node S is like 
Node R, except that the environment is less urban.   
 
In looking back over the complex statistical inference described by Figure 1, we note that 
the variables used for splitting, and the locations of the splits, are plausible.   Among the 
splits, there is some interesting material---the early division of drivers is not surprising, 
but the large impact of children on daily travel, as shown in Node 4, is good to confirm.  .  
The division based upon high-school education at Node 7 is intriguing, as is the division 
on race in Node 14.   The splits on geography, in Nodes 9, 12, and 18 point up an area of 
interest to transportation planners, and may ultimately inform efforts to establish more 
livable communities. 
 
 
3.2 Description of the Variables Effecting Long-distance Travel 
We now contrast the NPTS tree with the ATS tree shown in Figure 2.  The ATS tree is 
slightly more complicated, with 20 terminal nodes, though this represents a significant 
simplification over the 40 nodes in the optimal tree (here “optimality” refers to the best 
solution available for our particular choice of tuning parameters in the CART algorithm). 
It is not surprising that more complexity is needed; the factors that affect short trips in the 
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NPTS are likely to be different and fewer than those affecting long-distance travel. 
Figure 2: ATS CART® Trees 

 
 

Optimal 40 Node Tree 
 

 
 
 
 

20 Node Tree 
 

 
 
 

 
We read Figure 2 similarly to Figure 1.  The first split is on education; those without a 
college degree go to the left.  Node 2 splits on household income, with poorer families 
moving to the left.  Node 3 splits on whether the household owns one or fewer 
automobiles.  Thus cases that terminate at Node A tend to have less education, lower 
income, and fewer cars than cases in other nodes; as one expects, they also take few long-
distance trips.  Node B is like Node A, except that they own more cars and take more 
trips. 
 
Terminal Node C consists of middle-income people who did not attend college and who 
live in urban areas.  Nodes D and E are similar, but have higher incomes---the split that 
distinguishes these nodes is on employment, and may be spurious, since Node E has only 
three cases, a very high number of trips, and a high variance.  We suspect an outlier is 
driving the formation of this branch of the tree.   
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Table 3a 

NODE SPLITTER SPLITTING CRITERION STANDARD 
DEVIATION

AVERAGE 
TRIPS 

N 

1 EDUCATION Less or equal to a bachelor's 
degree 

8.885 5.294 50767

2 HOUSEHOLD 
INCOME 

Less or equal to $31,250 7.833 4.120 38616

3 VEHICLES Less or equal to 1.5 5.46 2.753 15466
4 LOCATION New Eng, Mid Atlantic, E.N. 

Central, S. Atlantic, E.S. Central, 
W.S. Central, Pacific, Chicago, 
LA, New York, San Fran, DC 

8.964 5.034 23150

5 EDUCATION Less or equal to high school 8.053 4.368 16977
6 PERSONAL 

INCOME 
Less or equal to $77,500 6.997 3.569 10561

7 WORK STATUS Working ft, pt, looking for work, 
Armed Forces, Homemaker, 
School, Something Else 

66.167 24.313 16 

8 AGE Less or equal to 32.5 9.392 5.684 6416 
9 MARITAL 

STATUS 
Widowed, Never Married 10.883 6.864 6173 

10 AGE Less or equal to 68.5 11.571 7.412 4919 
11 SEX Female 11.921 7.712 4438 
12 HHTYPE Married-couple family hh, Female 

family hh, Male hhs with children 
under 6 only & with no children 
under 18, Male and female 
nonfamily hhs 

14.985 8.638 2097 

13 WORK STATUS Working full-time, part-time, 
Armed Forces, Homemaker, 
School, Retired, Something Else 

32.857 20.593 27 

14 HOUSEHOLD 
INCOME 

Less or equal to $77,500 10.797 9.023 12151

15 WORK STATUS Working part-time, looking for 
work, Armed Forces, 
Homemaker, School, Retired, 
Something Else 

10.049 8.245 9313 

16 AGE Less or equal to 78.5 8.153 6.640 3362 

17 LOCATION New England, Middle Atlantic, 
Pacific, Chicago, Los Angeles, 
New York, San Francisco 

10.873 9.151 5951 

18 LOCATION New England, Middle Atlantic, 
Pacific, Chicago, Los Angeles, 
New York, San Francisco 

12.619 11.577 2838 

19 SEX Female 14.016 13.456 866 
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Table 3b 
Terminal Node Standard 

Deviation
Average N 

A 4.127 1.998 8248
B 6.559 3.615 7218
C 6.460 3.537 10545
D 6.952 6.231 13
E 124.837 102.667 3
F 7.469 4.039 1715
G 9.934 6.284 4701
H 7.211 4.715 1254
I 8.172 6.883 2341
J 14.543 8.482 2070
K 21.507 15.654 26
L 0 149 1
M 7.044 4.640 481
N 8.372 7.093 3036
O 3.589 2.417 326
P 9.606 7.460 1936
Q 11.343 9.967 4015
R 10.202 9.276 1276
S 11.431 10.966 696
T 15.502 15.458 866

 
Node F consists of young people who attended but did not graduate from college and 
who live in urban areas.  They take fewer long-distance trips than their older counterparts 
in Node G---this may reflect increasing rates of business travel as one moves up in an 
organization.  Node H consists of unmarried middle-income people with some college 
who live in less urban areas.   
 
Marriage seems to increase the average number of long-distance trips (except for people 
older than 68.5 years, shown in Node M), but introduces more complexity.  For example, 
Node I consists of married or divorced females with some college and middle incomes 
who live in less urban areas.  Nodes J, K, and L consist of comparable men, with a split at 
Node 12 that reflects whether they are primary custodians of children (note that Node 12 
is a categorical split, some of whose categories are precluded by higher divisions in the 
tree).  Node L has a single case, which should probably be deleted as an outlier; the effect 
of this deletion could simplify the local structure of the tree. 
 
To the right of the chart (cases that go right at Node 1) are college graduates.  Terminal 
Node N consists of unemployed college graduates; Node O consists of retired college 
graduates.  The latter take far fewer long-distance trips.  Node P consists of working 
middle-income college graduates who live in urban areas; their counterparts in less urban 
areas, Node Q, take more long-distance trips.  Node R consists of upper-income, urban 
college graduates.  Node S are upper-income female college graduates who live in less 
urban areas; Node T is similar, but consists of males.  The men take more long-distance 
trips than the women.  
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This description of the CART output is slightly impressionistic, since full specificity 
would require much more space.  But readers should refer to Section 6, which outlines 
the definitions and categories used.  
 
We are encouraged that, like the NPTS result, the ATS tree picks out plausible variables 
and splits.  The effects of two outliers appear in Nodes E and L, and this could be treated 
either by removal or use of a robust splitting criterion.  But the structure of the tree is 
sensible.  Education plays a very large role, as does employment and income (which are 
closely related).  Location is a recurrent split, with the consistent effect that those who 
live in urban areas take fewer long-distance trips.  Gender appears twice; when it is 
relevant, women appear to take fewer long trips than men.  These findings should be 
considered in the context of previous travel research, and additional RPR work should be 
done to test these apparent patterns. 
 
 
4. COMPARISON OF THE RESULTS TO REGRESSION 
Having described the RPR methodology and the trees that CART generated, we now 
want to compare our results against conventional multiple regression output.  Multiple 
regression is a natural competitor in this arena, and is widely used in data fusion research 
to identify variables upon which cases should be matched (Baker, Harris, and O’Brien 
1994).  To motivate the distinction between RPR and regression, imagine we have a 
single explanatory variable.  In that case, regression fits a line, whereas CART fits a 
staircase function.  The former method works best when the true relationship is linear, but 
the latter is better when the relationship is more complex. 
 
To compare the CART trees with regression, we use mean squared error from the fitted 
model.  In regression, mean squared error is just the average of the squared deviations 
between each observation and the fitted regression surface.  In RPR, mean squared error 
is the average of the squared deviations between each observation and the average value 
in its terminal node.  The more variables a method uses, the smaller the mean squared 
error will be (but if too many variables are used, one has overfit, which leads to 
unreliable inferences).   
 
To compare RPR and regression on the same footing, it is essential to ensure that both 
use the same number of explanatory variables.  The CART analysis of the ATS data used 
ten explanatory variables and achieved a mean squared error of 69.69.  The 
corresponding regression analysis, using backwards elimination to determine the best 
model with exactly ten explanatory variables, had a mean squared error of 20.65.  
Although this indicates that regression obtains better fit, one should bear in mind that 
regression could only use the 425 cases without critical missing data, whereas CART fit 
all 50,767 cases.  Given this limitation, it is premature to conclude that regression gives 
better model fit than RPR for ATS data.   
 
Similarly, for the NPTS data, CART used eleven variables to achieve a mean squared 
error of 9.25 on 33,763 cases, whereas the corresponding regression achieved a mean 
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squared error of 9.72 using the 210 cases without key missing values.  So on the NPTS 
problem, RPR gives slightly better fit and is far more applicable. 
 
5. CONCLUSIONS 
This paper outlines the first steps in a process to determine the feasibility of using data 
fusion for understanding the full continuum of travel.  We have focused in this portion of 
the research on the selection of matching variables, and have seen that RPR preformed 
well for describing local data variables and slightly less well in describing long-distance.  
We are not sure whether this is an anomaly of the datasets, and will give further attention. 
 
Overall, this research provides a novel application of recursive partitioning methodology 
to travel survey data.  The results are interpretable, and provide competitive fit when 
compared to conventional regression techniques.  This approach enables automatic 
identification of key explanatory variables and interactions, which is valuable in terms of 
understanding the relation of variables in the data set.  The partitions for each data set can 
be overlaid to produce a set of variables for matching in data fusion problems.  This 
process will be the focus of further research. 
 
 
6. ABOUT THE DATA 
The Nationwide Personal Transportation Survey (NPTS) is a survey of typical daily 
travel performed by people in households all over the United States.  All trips made 
during a pre-assigned 24-hour period by each household member five years of age and 
over in the sampled household were included in the survey.  Details about the purpose of 
every trip, means of transportation, trip time and duration, number of household members 
and total number of people on the trip, driver, and vehicle characteristics are included in 
the data set.  
 
The American Travel Survey (ATS) is a survey of long-distance travel made by people in 
households all over the United States.  The ATS contains information about trips of 100 
miles or more away from home taken by all modes of transportation for a period of one 
year.  Details on origin, destination, purpose, and mode are included and the data provide 
insight into America’s long-distance transportation choices, including foreign and 
domestic travel.  Table 3 compares and contrasts the two surveys. 
 
To ensure comparability between these surveys, we restrict attention to those households 
interviewed between July and December of 1995, inclusive, which is the overlapping 
period for reports.  Also, we restricted our analyses to subjects who are 18 or older, 
because younger children are most often passengers, and thus more likely to contribute 
noise than signal.   
 
Under these restrictions, we have NPTS data from 33,163 households and ATS data from 
50,767 households.  Both surveys recorded household demographic data (e.g., number 
and ages of residents, education levels, income, location, and so forth) as well as travel 
data for all modes of transportation.  
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Table 3 - Comparison of NPTS and ATS  
 
 

 
NPTS 

 
ATS 

 
Scope 

 
All trips made by civilian, non-
institutionalized persons living in 
households (not group quarters) 
who are aged five and older.  
Student dormitories were not 
included in the sample.  

 
Trips to destinations 100 
miles or more away from 
home made by civilian, 
non-institutionalized 
persons of all ages. 
College dormitories and 
housing were included in 
the sample of households.   

 
Sample and 
population 

 
List-assisted RDD/all U.S. 
households 
 

 
Retired Census current 
population survey (CPS) 
address samples/all U.S. 
households  

 
Mode of data 
collection 

 
Computer assisted telephone 
interviewing (CATI),  

 
Computer assisted 
telephone interviewing 
(CATI) and computer 
assisted person 
interviewing (CAPI).  

 
Data collection 
period 

 
One year: May 1995 through June 
1996.  

 
One year: April 1995 to 
March 1996. 

 
Reporting period 

 
1 day 

 
3 months 

 
Imputation 

 
Data for missing values is coded 
as missing. 

 
Values for missing data 
are estimated through 
imputation procedures.  
Imputed data are flagged. 

 
For more information, please visit our websites at: 
 
http://www-cta.ornl.gov/npts 
 
http://www.bts.gov/programs/ats 
 
  
ACKNOWLEDGEMENTS 
The authors wish to thank Bernetta Crutcher, Mathematical Statistician at the Bureau of 
Transportation Statistics, who assisted in the CART analysis. She learned about and used 
two complex data sets, and ran the SAS analysis needed to make them meaningful.  
Without her effort and attention to detail this analysis could not have been completed.   
 
 

 17



REFERENCES 
 
 
Baker, K., Harris, P. and O’Brien, J. (1994) Data Fusion: An Appraisal and Experimental 

Evaluation, Journal of the Market Research Society, Vol. 31, No. 2. 
Breiman, L., Friedman, J., Olshen, R., and Stone, C., Classification and Regression 

Trees, 1984, The Wadsworth Statistics/Probability Series  
Kamakura, W. and Wedel, M. (1996) Statistical Data-Fusion for Cross-Tabulation, 

Unpublished document, University of Pittsburgh. 
Kish, L. (1999) Cumulating/Combining Population Surveys, Survey Methodology, Vol. 

25, No. 2. 
Madre, J.L and Maffre, J. (1999) Is it Necessary to Collect Data on Daily Mobility and on 

Long Distance Travel in the Same Survey?, Proceedings Personal Travel: The 
Long and Short of It, Washington, DC, June 1999. 

Morgan, J.N., and Sonquist, J.A. 1963. Problems in the Analysis of Survey Data, and a 
Proposal. J. Amer. Statist. Assoc., 58: 415-434. 

O’Brien, S. (1991) The Role of Data Fusion in Actionable Media Targeting in the 1990’s, 
Marketing and Research Today, February 1991. 

Radner, D., Allen, R., Gonzalez, M.E., Jabine, T.B., and Muller, H.J (1980) Report on 
Exact and Statistical Matching Techniques,  Statistical Policy Working Paper 5, 
U.S. Department of Commerce, Washington, DC.: U.S. Government Printing 
Office. 

Rassler, S. and Feischer, K (1999) Aspects Concerning Data Fusion Techniques, 
Unpublished document, Nurnberg. 

Rodgers, W. (1984). An Evaluation of Statistical Matching  Journal of Business & 
Economic Statistics, Vol. 2, No. 1, January 1984. 

Rubin, D. (1976) Inference and Missing Data, Biometrika, 63, 581-592. 
Rubin, D. (1986) Statistical Matching Using File Concatenation with Adjusted Weights 

and Multiple Imputations, Journal of Business and Economic Statistics, Vol. 4, 
No. 1. 

Rubin, D. and N. Schenker (1986) Multiple Imputation for Interval Estimation From 
Simple Random Samples with Ignorable Nonresponse,  Journal of the American 
Statistical Association, Vol. 81, No. 394, June 1986. 

Shannon, W. and Banks, D. (1999) Combining Classification Trees Using MLE, 
Statistics in Medicine, Vol. 18, page 727-740. 

Wiednebeck, M. (1999) Fusion of Data and Estimation by Entropy Maximization, 
Proceedings from Statistics Canada Symposium 99, Ottawa, Canada. 

 
 

 18



 19



 

 20


